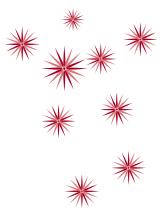

Issue 17 August 2017

SFA Newsletter

Seasons Greetings!


About SFA

Objectives

Local centers

Welcome you all to join as members of SFA! Please find the membership form inside; kindly fill in and contact Secretary of SFA through email.

Message from our President

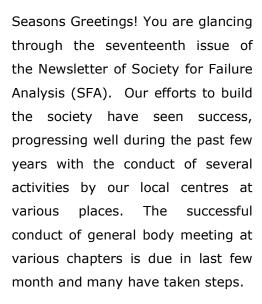
Experts and experiences:

- Prof.S.R.Satish Kumar, IIT, Madras
- Dr.Prasanta Kumar Rout, Tripura University

Dear readers,

Warm seasons greetings! I am happy to find the SEVENTEENTH issue of SFA newsletter rolling out coinciding with the famous festival season that gets underway in August in India. While all of us enjoy some of India's most popular and traditional festivals and celebrations, it is my humble appeal to all my colleagues to nurture brotherhood and revelry towards one another. August month celebrates the birth of a famous structural engineer, Eugene Figg who worked diligently to combine function and form in his creation of some of the most aesthetically pleasing bridges ever designed. This makes me remind all of you of the quotation:"refuse to lower your standards to those who refuse to raise their standards".

Best wishes to all the readers!


P.Jayapal PRESIDENT, SFA

Edited by: Dr.P.Parameswaran, Metallurgy & Materials Group, IGCAR, Kalpakkam

Page 2 of 18

From the Desk of Editors

We solicited articles for the current issue from failure analysis experts of our country who had worked on many case histories.

We thank the two authors for their contributions which are quite interesting studies - one on "stress corrosion cracking in Al alloys" by Dr.Prasanta Kumar Rout, Tripura University and another "Structural failures" from Prof.S.R.Satish Kumar, IIT Madras for the current issue.

We take this opportunity to appeal to the Indian industry to use SFA as a forum to share their experiences on trouble shooting. A great way to add content to this newsletter is to include a calendar of upcoming events. The details of important forthcoming international and national events are included; so also the books recently published on the topics of the subject.

We value your comments, which really boost our enthusiasm to perform better. Therefore, as always, your views and comments, mailed to param@igcar.gov.in are welcome. We wish you all success free of failures and a joyful life!

You may visit our web site for your comments/suggestions or any queries: www.sfaindia.org

Kalpakkam

31-08-2017 (P .Parameswaran) Editor

We encourage you to join the society, Kindly fill up the application form (enclosed at the end of the newsletter) and contact secretary: pjayapal59@yahoo.co.in; alternatively, post your application with draft to Sri.B Jana, Treasurer, **RCMA**, CEMILAC, Kanchanbagh, Hyderabad, 500 058

Page 3 of 18

Dr. A. C. Raghuram, formerly of NAL, Bengaluru

Dr. Amol A. Gokhale, IIT B, Mumbai Dr. Baldev Raj, NIAS, Bengaluru Prof. D. Banerjee, IISc. Bengaluru Dr. G. Malakondaiah, DRDO, New Delhi Dr. P. Rama Rao, ARCI, Hyderabad Dr. S. Srikanth, NML, Jamshedpur

Dr. V.K. Saraswat, DRDO, New Delhi **Past Presidents**

Dr. A. Venugopal Reddy, ARCI, Hyderabad Dr. K. Tamilmani, CEMILAC & DRDO, Bengaluru

Dr. T. Jayakumar, NIT, Warangal

Shri P. Jayapal, Chief Executive, CEMILAC, Bengaluru

Vice Presidents

Dr. S. K. Bhaumik, NAL, Bengaluru Dr.N Eswara Prasad, CEMILAC Dr. B.P.C Rao, IGCAR, Kalpakkam Prof. R.C. Prasad, formerly IITB, Mumbai Prof. T. Srinivasa Rao, NIT, Warangal

General Secretary

Sri.S.K.Jha CEMILAC,Bengaluru

Joint Secretaries

Shri Bahukhandi, Former IOCL, Mumbai Dr. Kulvir Singh, BHEL R&D, Hyderabad Dr. P. Parameswaran, IGCAR, Kalpakkam

Treasurer Shri B. Jana, RCMA (Mat.), Hyderabad Members:

Shri AK Jha, VSSC, Thiruvananthapuram Shri BB Jha, IMMT (RRL), Bhuvaneshwar Dr. DR Yadav, DRDL, Hyderabad Dr. Eswaran, BHEL, Tiruchirapalli Dr. KP Balan, DMRL, Hyderabad Prof. K Srinivasa Rao, AU, Visakhapatnam Shri Komal Kapoor, NFC, Hyderabad Dr. M Vijayalakshmi, IGCAR, Kalpakkam Prof. MK Mohan, NIT, Warangal Shri MS Velpari, HAL (F/F), Bengaluru Shri Prabhat Gupta, RCMA (Luknow),

Shri RK Satpathy, RCMA (Koraput), Koraput

Dr. Sandip Bhattacharya, Tata Steel, Jamshedpur

Shri SD Lagavankar, RCMA (Nasik), Nasik Dr. S Seetharamu, CPRI, Bengaluru

Dr. S Tarafdar, NML, Jamshedpur

Dr. S Janaki Ram, IIT-M, Chennai

Dr. UTS Pillai, NIIST, Thiruvananthapuram Dr. Vivekanand Kain, BARC, Mumbai Prof. VS Raja, IIT-B, Mumbai

Shri YS Gowaikar, Metatech, Pune Dr.Sujatha, NAL, Bengaluru DR.Swati Biswas, GTRE, Bengaluru

Editor of Newsletter:

Dr.P.Parameswaran, IGCAR

About the society

Aims and Objectives of Society for Failure Analysis

The aims and objectives of the Society shall be:

To serve as National Society to promote, encourage and develop the growth of "Art and Science of Failure Analysis" and to stimulate interest in compilation of for effective database, identification of root causes of failures and their prevention thereof.

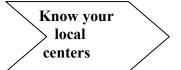
To serve as a common forum for individuals, institutions, **Industries** organizations and interested in the above.

disseminate information To concerning developments both in India and abroad in the related fields.

To organize lectures, discussions, conferences, seminars, colloquia, courses related to failure analysis and to provide a valuable feed back on failure analysis covering desian, materials, maintenance and manufacturing deficiencies / limitations.

train personnel Tο in investigation failures of on engineering components and their mitigation.

To identify and recommend areas for research and development work in the Country relating to failure analysis.


To establish liaison with Government, individuals, institutions and commercial bodies on failure analysis, methodologies and to advise on request.

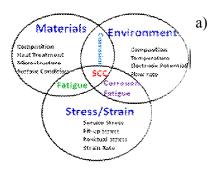
cooperate with other professional bodies having similar objectives.

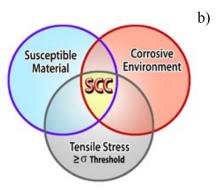
To affiliate itself to appropriate international organization(s), for promotion of common objectives and to represent them in India.

To organize regional chapters in different parts of the country as and when the need arises.

To do all such other acts as the Society may think necessary, incidental or conducive to the attainment of the aims objectives of the Society.

Page 4 of 18


STRESS CORROSION CRACKING (A MAJOR ISSUE IN ALUMINIUM ALLOYS)


Dr. Prasanta Kumar Rout Assistant Professor Dept. of Material Science and Engineering Tripura University

1. Introduction

Stress corrosion cracking (SCC) is a cracking phenomenon that occurs in susceptible metals and alloys, and is caused by the conjoint action a of tensile stress (stress level must be above some threshold value) and the presence corrosive of a specific environment. The schematic representation of SCC is shown in the figure 1(a,b).

Stress corrosion crack may be transgranular, intergranular or mixed mode depending on alloy/environment system and loading mode as well. This cracking phenomenon is of grave concern which has initiated several researchers to dwell at length on the phenomenon as SCC leads to catastrophic failure under service conditions without any prior warning. Among the various alloy systems subjected to SCC which is listed in Table 1[1], aluminium alloys are important. As per the data published in literatures and case histories data, the frequency of failure modes in engineering components and aircraft components is listed in the Table 2 [2]. 7xxx series Al-Zn-Mg-(Cu) alloys have the maximum strength amongst the age hardenable aluminium alloys and are used in the aircraft, armored fighting vehicles and automotive industries for structural components in their maximum strength (T6 temper)

Figure 1. Schematic representation of stress corrosion cracking (SCC) phenomenon.

condition. In fact, these alloys have experienced increasing levels of use in recent years and have replaced materials such as wood, copper, and steel in many engineering applications. However, these alloys in peak aged (T6 temper) condition undergo stress corrosion cracking (SCC) in aqueous solution containing particularly active chloride ions [3,4]. This can strongly reduce the service life of aerospace components having a negative effect on safety and cost.

Although SCC is a well documented phenomenon, there is a still considerable disagreement in the literatures regarding the operating mechanism. The mechanism of

Page 5 of 18

Table 1. Stress corrosion cracking susceptibility of some metal/alloys in specific environments

Metal/Alloy	SCC susceptibility environment								
Aluminium alloy	Sodium chloride (NaCl solution), Seawater, Mercury								
Copper alloy	NH ₃ vapor, NH ₃ solution, Mercury								
Magnesium alloy	Rural and coastal atmosphere, Distilled water, NaCl solution, Potassium dichromate solution								
Inconel	Caustic soda solution								
Gold alloy	Ferric chloride solution. Acetic acid/salt solution								
Lead	Lead acetate solution								
Nickel	Fused caustic soda								
Carbon steels	Sodium hydroxide solution, Sodium silicate solution, calcium Nitrate, Seawater, Mixed acid, Ammonium nitrate, Hydrogen sulfide								
Stainless steels	Barium chloride and Magnesium chloride solution NaCl-H ₂ O ₂ solution, Seawater, NaOH-H ₂ S solution								
Titanium alloy	Red fuming nitric acid								

Table 2. Frequency of failure mode

Failure type	Percentage of failure					
	Engineering components	Aircraft components				
Corrosion	29	, (it				
Fatigne	2.5	4.35				
Brittle fracture	1.6	•				
Overload		,. .				
High temperature corresion	-	1 -				
SCC/Corrosion fatigue/HE	6	7				
Creep	3					
Wear/Abrasion/Erosion	3	i				

failure is still far from established and convincing evidence to make a choice among different proposed theories or model is lacking. In spite of active research have been carried out for several decades, this field of research is still very vibrant and active because the role of metallurgical factors on SCC is very complex. mechanism is not fully understood till date. In this context, it is to highlight that (i) the size and distribution of strengthening matrix and grain boundary precipitates, (ii) presence of coarse intermetallic dispersoids (intra- and intergranular) and particles, (iii) width of precipitate free zone (PFZ), (iv) grain sizes and (v) their orientations etc. and the environmental factors e.g. (a) pH of the medium, (b) nature of electrolyte and (c) applied potentials which have pronounced influence/effect on the stress corrosion cracking tendency [5-

7]. Therefore, it is emphasized that the SCC process of Al-Zn-Mg-Cu alloys is a very complex interplay amongst the microstructural features, environmental conditions, and state of stress situations as well. The present note brings out the research on assessment of SCC behaviour of 7xxs series Al-Zn-Mg-(Cu) alloys briefly as follows.

2. Experimentation

As it is well known and established that the Al-Zn-Mg-Cu alloys provide highest strength in their peak aged (T6) condition, but unfortunately the alloy is susceptible to stress corrosion cracking (SCC). On the other hand, over aged tempers (i.e. T7 and T7X) have higher resistance to SCC but with 10-15% lower strength compared to that of T6 temper. Efforts have been directed towards developing new heat treatment / ageing schedule to optimize both strength and SCC resistance of the Al-Zn-Mg-Cu alloys by altering

Page 6 of 18

microstructural features.

In this context, Rout et al [7] made attempt to develop and re-establish some novel ageing technique (listed in Table 3) such as high temperature pre-precipitation (HTPP) ageing and interrupted ageing (T6I6) to increase the SCC resistance of a high strength 7150 alloy. The chemical composition of the 7150 alloy is given in Table 4. The SCC studies were carried out by slow strain rate technique (SSRT) using a computer controlled constant extension rate (CERT) machine test (M/S)CORTEST Inc, Ohio, USA) conforming to ASTM G 129-95 standard. Tensile specimens for SSRT test were machined out and prepared from the long transverse (LT) direction of the alloy sheet as per the ASTM E8-1983 standard. Tests were performed at an initial strain rate of $\sim 3.3 \text{ X } 10^{-6} \text{ s}^{-1}$ in laboratory air and in naturally aerated aqueous 3.5 wt. % NaCl solution. In the present investigation, the authors have presented the SCC susceptibility index (I_{SCC}) by ductility

ratio (DR), the ratio of strain to fracture in environment to strain to fracture in air $(\varepsilon_{\text{envn}}/\varepsilon_{\text{air}})$, fracture energy ratio (FE) i.e. the area under the plastic region of the stress strain curve in environment to the area under the stress strain curve in air $(FE_{\text{envn}}/FE_{\text{air}})$ and time to fracture ratio, i.e. time to failure in environment to the time to fracture in air $(t_{\text{envn}}/t_{\text{air}})$. In general, the higher the value of DR, the higher is the resistance to SCC.

3. Results and discussion

Fig. 2 shows a few representative stress—strain curves of the 7150 alloy of various tempers tested in SSRT unit in air and in 3.5 wt.% NaCl solution. SCC index (Iscc) values of the 7150 alloy of various tempers are listed in Table 5.

From the SSRT results and data, it can be concluded that the SCC susceptibility for the 7150 alloy is more in case of T6 temper as compared to HTPP aged and T616 temper. Further, SSRT results indicated that the novel ageing techniques (i.e. HTPP aged and T616

Table 3. Solution treatment and agoing schedules for the 7150 aluminium alloy.

Alloy tempers	Solution treatment and ageing schedules
T6	Specimen were solutionised at 475 °C for 45 minutes, water quenched, followed by
	artificial ageing at 120 °C for 24 h.
HTPP	Specimen were solutionised at 475 °C for 45 minutes, cooling to 440 °C in furnace at a
	cooling rate of 1 °C minute and maintaining for 30 minutes for pre-precipitation, then water
	quenched, followed by ageing at 120 °C for 24 h.
	Specimens were solution treated at 475 °C for 45 minutes quenched in water, pre-aged or
T6I6	under aged at 120 °C for 30 minutes and again quenched in water. The water quench
	specimens were further aged (secondary ageing or secondary precipitation) at a low
	temperature of 65 °C for 10 days followed by re-ageing isothermally at 120 °C for 24 h.

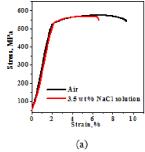
Table 4. Chemical compositions (wt. %) of the 7150 allow

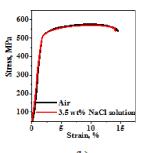
Alloy	Zn	Mg	Cu	Zr	Fe	Si	Mn	Al
7150	6.30	2.40	2.30	0.12	0.10	0.05	MIL	Eniance

Page 7 of 18

aged) applied to the 7150 alloy have beneficial effects with enhanced resistance to SCC in 3.5 wt. % NaCl solution, without any significant loss of strength value. This is attributed to the variation of microstructural features which will be explained and discussed in subsequent paragraphs (SCC mechanism section) with the help of the microstructural features assessed by TEM.

Fig. 3a, the fractographs of the T6 temper tested in 3.5 wt.% exhibit prominent NaCl solution cracking, intergranular secondary cracks and very fine numerous dimples in some of the However, the overall grains. fracture surface looks like a rock candy type brittle intergranular Fractograph reveals appearance. intergranular mostly fracture surface leading to intergranular stress corrosion cracking (IGSCC) attack and brittle failure. When the HTPP aged specimen tested in 3.5 wt.% NaCl solution, the fractograph displays dimples in the interspersed grains which indicate ductile fracture and presence of a few and short intergranular cracks as well (Fig. 3b). The fractograph of the T616 temper tested in 3.5 wt.% NaCl solution (Fig. 3c) displays mixed-mode type fracture features. There are no signs of intergranular cracking, distinct cleavage facets (barring a few grains showing such features); however dimples of various sizes are visible.


Thus, from the observations of the fractograph evidences and features, it can be inferred that HTPP aged and T6I6 tempers have higher resistance to SCC compared to T6 temper, which is in good agreement with the observed slow strain rate test (SSRT) results.


4. Stress corrosion cracking mechanisms in 7150 alloy

The η (MgZn2) precipitates located along the grain boundaries of 7xxx series Al-Zn-Mg-Cu alloy are more electrochemically active than the matrix. When the alloy and or the alloy tempers are exposed to corrosive environment, the η precipitates preferentially dissolve due to the

Table 5. Stress corrosion cracking index (I_{acc}) values of the 7150 aluminium alloy of various tempers tested by slow strain rate test (SSRT) technique in air and in 3.5 wt.% NaCl solution.

Temper Environment			SSRT dat	a	SCC index			
		% Strain	Time to	Fracture	ε _{env} / ε _{air}	$t_{ m fenv}$ / $t_{ m fair}$	$FE_{ m env}/FE_{ m air}$	
		to	fracture,	energy				
		fracture,	$t_{ m fs}$	(FE), J/cm ³				
		ε	hour:min					
T6	Air	9.35	14:00	38				
aged	NaCl solution	6.58	9:15	24	0.70	0.66	0.63	
T6I6	Air	11.76	16:00	47				
aged	NaCl solution	10.51	15:10	44	0.90	0.94	0.93	
HTPP	Air	14.61	18:10	66				
aged	NaCl solution	11.13	17:30	64	0.96	0.93	0.96	

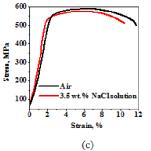
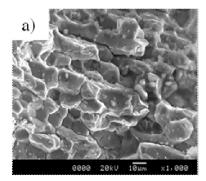
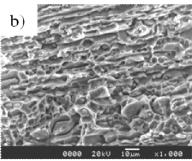
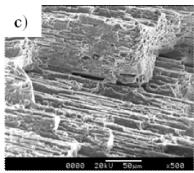


Figure 2. A few representative stress-strain curves of the 7150 alloy of various tempers tested in air and in 3.5 wt.% NaCl solution (a) T6, (b) HTPP and (c) T616




Page 8 of 18


Failure is success if we learn from it. Malcolm Forbes

galvanic reaction between the precipitates and adjacent alloy matrix and results in an active corrosion path. present study, the micrographs (Fig. 4a) of the 7150 alloy of the T6 tempers revealed that the n (MgZn₂) precipitates are continuously distributed along the grain boundaries. During the slow strain rate testing (SSRT) of the T6 alloy temper in the test media, the η precipitates present in the microstructures of T6 tempers undergo preferentially dissolved by the said galvanic action. Thus, the galvanically corroded regions (i.e. dissolved continuous precipitates) under applied increasing loading during SSRT acted as crack initiation sites and crack propagation path as well, resulting in intergranular stress corrosion cracking (IGSCC). So, local (intergranular) anodic dissolution is proposed to be one of the operating models for SCC failure in the T6 temper of the 7150 alloy. Similar mechanism has also been proposed in literature [8-10].

However, stress corrosion (SC) crack velocity depends on the rate of dissolution of the anodic η precipitates. So, a larger size and wider spacing of these precipitates decrease dissolution rate, slower down the crack propagation velocity and improves the SCC resistance of the alloys. In the TEM micrograph of HTPP aged alloy (Fig. 4b) the larger, discrete distribution discontinuous precipitates along the grain boundary did not act as favorable galvanic action between anodic η precipitates and matrix, and hence there is no appreciable and significance intergranular galvanic corrosion. This inhibited and delayed initiation propagation crack and exhibiting enhanced resistance to SCC. Further, the TEM micrographs of T6I6 temper (Fig. 4c) show that the grain

Figure. 3. SEM fractographs of SSRT specimens of the 7150 alloy of various temper tested in 3.5 wt.% NaCl solution (a) T6 (b) HTPP (c) T6I6

Page 9 of 18

Winners lose more than losers. They win and lose more than losers, because they stay in the game. "

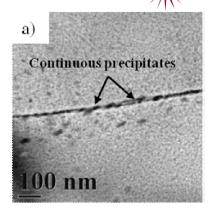
~ Terry Paulson

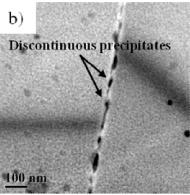
OLD ARCHITECTS never die, they just lose their structures

boundary precipitates are very fine compare to that of T6 temper but at the same time these are discrete and discontinuous. Thus, these novel heat treatments (i.e. HTPP and T6I6) applied to the 7150 alloy have caused in alteration of microstructural features of the alloy.

4. Conclusions

The mechanism more probable to induce SCC in the 7150 alloy of T6 temper is anodic dissolution of grain boundary precipitates. The resistance to SCC of the high temperature preprecipitation (HTPP) aged interrupted ageing (T6I6 aged) tempers is attributed to the non-interconnected nature of the grain boundaries n precipitates. Thus, the present investigation represent that microstructural features of the 7150 alloy tempers have changed different novel ageing treatment (i.e. HTPP and T6I6) and effectively improved the SCC resistance of the while retaining the peak aged strength property.


5. References


[1] N. Moriber, Corrosion Basics: An Introduction, 2nd Ed. Pierre R. Roberge (Houston, TX: NACE Int., (2006), 394-395. [2] S. J. Findlay, N. D. Harrison, Materials today, November, (2002), 18-25. [3] Z. Huda and P. Edi, Mater. Des. 46 (2013), 552-560. [4] J.C. Williams and E.A. Starke Jr., Acta Mater. 51, (2003), 5775-5799. [5] M.B. Kannan and V.S. Raja, Eng. Frac. Mech. 77, (2010), 249-256. [6] Y. Deng, Z. Yin, K. Zhao, J. Duan, J. Hu and Z. He, Corros. Sci. 65, (2012), 288-299. [7] P.K. Rout, M.M. Ghosh and K.S. Ghosh, Mater. Sci. Eng. A 604, (2014), 156-165. [8] M. Czechowski, Adv. Mater. Sci. 7, (2007), 13-20.[9] D. Najjar, T. Magnin, T.J. Warne, Mater

Sci Eng A 238, (1997), 293-302.

(2004), 4727-4743.

Liu, M.K. Tseng, A. Atrens., Acta Mater 52,

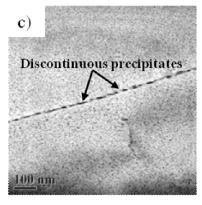


Figure.4. TEM microstructures of the 7150 alloy of various tempers (a) T6, (b) HTPP and (c) T6I6; detailed discussion in see section 4

Page 10 of 18

SFA Newsletter

August 2017

Lessons from Structural Failures in India Dr S R Satish Kumar

Department of civil Engineering, IIT Madras, Chennai 600 036

The objective of Forensic Structural used to build brick walls had not Engineering is to trace the path which led or could lead to a failure and suggest suitable methods to avoid it. There are a number of reasons for structural failures in India. These may be listed as follows:

- 1. inferior quality of the educational system in several institutions.
- 2. lack of a regulatory mechanism such as a license for practice for engineers and technicians.
- 3. Inefficient and unjust legal framework.
- 4. barrier between a literate and an illiterate worker.
- 5. adoption of new materials and systems.
- 6. inadequate and unreliable material testing facilities.
- 7. Inability to learn from extreme events such as cyclones and earthquakes.

The first case study is concerned with the simple compound wall where two different failures occurred over a period of time. In the first case, a large length of a compound wall overturned on a hot summer afternoon and investigations proved the cause to be the light weight nature of the wall due to the use of hollow concrete blocks. Since there was no high wind recorded during that time, it was probably a whirlwind which develops during the hot summer which must have pushed the wall. Normally, an equivalent solid brick wall of that height would not have overturned under such conditions due to its inherent weight. Hence, the mason who was

expected the wall to overturn. In the second case, a strong wall of random rubble masonry, about two kilometers long and two meters tall, was built but its enormous weight became a drawback as it was pushed by a strong earthquake.

The next case is that of a cantilever scaffolding for a bridge which had a critical weld at the top. Two sets of systems were shop fabricated and the quality was checked ultrasonic testing. However, in order to speed up the construction, a third set was fabricated at the site and the weld gave way under the weight of the wet concrete.

With the advent of major preengineered building companies set up with foreign collaboration, industrial buildings are being designed in stark contrast to the traditional trussed roof on built-up column systems. Both rafters and columns are designed as fabricated plate girders with deep thin webs. Lateral support in the minor axis direction is usually provided by braced bays using tubular struts. However, in one building, cables were used as bracings and the cables were not adequately pretensioned. As a consequence, under working loads the columns had a marked buckling about their weak axis.

In another incident, the rafters in a gabled portal frame were designed assuming them to be laterally supported and adequate roof bracing and strut tubes were provided to ensure stability for adjacent frames. However, after erecting two frames,

Page 11 of 18

Refuse to lower your standards to accommodate those who refuse to raise theirs.

~ Mandy Hale ~

due to owner regulations to cease construction activity after sunset, the bracing could not be erected. The rafters were given temporary supports with guy cables anchored to the ground away from the frame line. During the night there was a light wind and in the morning, it was noticed that the rafters had undergone severe lateral torsional buckling under the combined action of wind and its own self weight. Even the columns had undergone a twist and damaged the pedestals. Apparently, the guy cables were not stiff enough to restrain the rafters from buckling. The incident underscores several points.

- Design should not be pushed to the limit where a slight increase in the load can lead to failure.
- Designer has to foresee possible loads during erection and also should specify erection procedures where possible.
- Safety regulations at site are intended to avoid injury to people and may not consider damage to structure or equipment. Where necessary, they should also consider damage to the structure since a damaged structure poses a greater risk for injury.

An aircraft Hanger roof collapsed during construction. The investigations into the cause started with the design document. It was observed that as is often the case, the steel hanger roof was designed by one consultant and the reinforced concrete supporting structure, along with the adjacent buildings were designed by another consultant. The first consultant had assumed simply supported conditions and given only axial loads on columns for design by the second consultant. Neither of them gave details of the steel truss support and so the contractor tried

to avoid the use of separate anchor bolts and instead relied on the column reinforcement bars to hold down the truss. The consequent horizontal pull exerted by the truss led to the collapse of the roof. This underscores the need for a single structural engineer to be made responsible for the entire design and detailing.

A long, standing-seam roof system was installed over an industrial structure and one fine day, a part of the roof was blown off. There were several temporary structures such as huts with palm leaves which did not have any damage testifying to the fact that the wind velocities were normal. Rechecking of the design calculations showed that the roof was designed to withstand code wind velocities which were much higher. After inspecting the site, it was realized that the clips used for clamping the roofing sheets to the purlins had opened up. The clip consists of two parts, one with a slot which is screwed dorn to the purlin using self-tapping screws and the other with a u-bent plate which is welded to the roofing sheet and engages with the slot. When held in the hands and disengagement was attempted, it was realized that a slight twist of one relative to the other facilitated the disengagement. Such a twist was not possible since one part was welded and the other part was attached with three screws. However, a closer look at the failed clips revealed that this was indeed the case as only one screw was installed thus allowing the wind to slowly twist the clip with each gust and also to loosen the screw.

A large number of structures collapsed during the Gujarat earthquake of 2001. Investigations revealed the following major reasons (Earthquake Spectra 2002):

Page 12 of 18

- Neglecting the contribution of the wall stiffness resulted in several open-ground storey buildings failing by the softstorey mechanism.
- Many design engineers were unaware of a code on ductile detailing of RC structures (IS13920:1993) and had designed and detailed as per the basic design code (IS456:2000).
- poor understanding of the dynamic response of the systems.
- Poor quality materials and poor quality workmanship were revealed by the seismic load.

There have also been several fire disasters in India and although codes on fire design and fire protection are available, their implementation is difficult to ensure.

During a recent cyclone HudHud in the east coast of India, the Visakhapatnam airport was severely damaged. The exact cause of the damage is being investigated but it may be observed that architecture involving large glass curtain walls are vulnerable during extreme winds and may not be suitable in tropical countries.

In conclusion, it may be observed that there are several factors responsible for the relatively large number of structural failures in India and these need to be addressed to mitigate loss of life and property. The development and popularization of Forensic engineering as a subject can raise awareness about these problems and help steer the concerned people in the right direction.

Specific case studies if made available on the internet can help in others learning the lessons from past failures and thus avoid the pitfalls judiciously.

References:

Satish Kumar S. R. 'Lessons from structural failures in India', Forensic Engineering, Institution of Civil Engineers, UK, Volume 169 Issue 4, November 2016, pp. 143-148.

Page 13 of 18

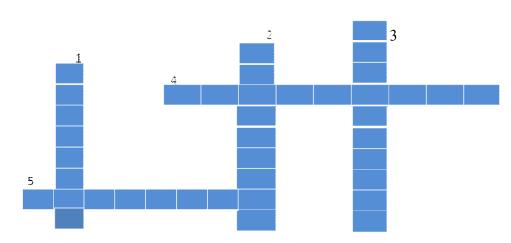
Failure Analysis in Metallurgical Industries –FAME-2017

Hyderabad Chapter jointly with Defence Metallurgical Research Laboratory (DMRL) and Regional Centre for Military Airworthiness (Mat), Hyderabad conducted a one-day Seminar on "Failure Analysis in Metallurgical Industries (FAME-2017)" on 5th August, 2017 at

Hotel Minerva Grand, Secunderabad. Dr. Samir V. Kamat, OS & D.G. (NS&M), DRDO and Shri N. Ranga Rao, CMD, Sai Deepa Rock Drills graced the occasion as Chief Guest and Guest of Honour, respectively. Shri.Satyapal Singh, Scientist G & Group Head, SFAG, DMRL welcomed the gathering and briefed on the genesis of the seminar as well as its technical deliberations. Dr. Vikas Kumar, OS & Director, DMRL stressed on the importance of failure analysis in the metallurgical industries and highlighted the contribution of DMRL in such activities over the past three decades. Shri P.Jayapal, President, SFA and CE(A), CEMILAC, Bengaluru appraised the gathering about the functioning of SFA and its effective utilization by the Dr. A. Venugopal Reddy. engineers, technologists, scientists and

Society for Failure Analysis (SFA), others. Seven invited talks were delivered by the eminent experts from the R&D organizations, academia and industries covering spectrum of seminar theme involving failure analysis methodology, role of NDT in failure analysis and failures in aerospace & defence industries as well as other metallurgical industries. Dr. Chandan Mondal, Scientist E, DMRL, Convener, FAME-2017 and treasurer, SFA Hyderabad chapter proposed the vote of thanks. About 110 delegates from academia and R&D organizations participated in the seminar actively and got benefitted. On this occasion, the society also felicitated Dr. Kamat, Dr. Vikas Kumar, and Shri Javapal on being promoted and/or assuming higher responsibilities in DRDO. The society conferred the inaugural SFA awards namely, the National Failure Analyst 2016 to Dr. Chandan Mondal and Dr.P.Parameswaran and the Lifetime Achievement Award 2016 to

Page 14 of 18



Cross word puzzle on failure analysis terminology

- 1.0! spy rati for its openness [8]
- 2. Gear sink in H-lubricant exhibited reduction in size [9]
- 3. Lalongwith fifty interrogated tacit spy who exhibited ireiding [10]
- 4. River got into small company-so aggressive chemical action. 31
- 5. Operation of introducing gas in tin reduced its MP and made workable [8]

See page 17 for answers:

- 1.0! spy roti for its openness [8]
- 2. Gear sink in H-lubricant exhibited reduction in size [9]
- 3. Lalongwith fifty interrogated tacit spy who exhibited vielding [13]
- 4. River got into small company-so aggressive chemical action [[9]]
- 5. Operation of introducing gas in tin reduced its MP and made workable [8]

Amount Paid (Rs)

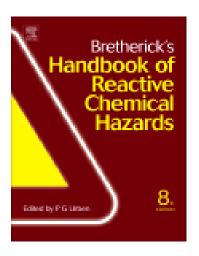
Society for Failure Analysis

Application Form

Society for Failure Analysis
C/O Centre for Military Airworthiness &

Phone: 040-24340750; 24348377;

Fax: 040-24341827


S. Contraction			ication, erabads	, RCMA (Ma 550 058	terials)		E-mail: rd	rcma.r	mat@cemila	ıc.drdo	.in
_	POERABA	Please	e√app	licable	m	ember			Life Men	nber	
	Name in Block Le	etters									
	First Date of birth			Middle			L	ast			
•	Father's Name/ Present Occupa				addres	s:		Mo Fa:	one: bile: K: ail:		
	Academic & Pro	fessional (Qualific	ations:				LII	uii.		
	Home address:							Ma Fax			
	Address for corre			office		Home	_	E-n	<u>nail</u>		
	Professional Expendence Endorsement by		ber			Memb	pership No		Signature		
	Name					Membership No. Signature					
Ī	Primary Field of I		lease r		n the in	ı -	preference		·	-	
	Strategic	Power		Foundry		Welding		Heavy	industry	trans	port
	Design & Failures	Quality contro	ol 📙	Petrochemico	al 📙	Consultar services	icy /		ials and facturing	Educ	ation
•	Name of the Cho (Please refer to (Subscription det Payment should b cheques not acce	Chapters' ails: e made by	list)			ety for Fai	lure Analys	i is" , pa	yable at Hyd	erabac	d. Outstation
	Amount Rs.	C	heque	/ D.D. No					ated		
	Bank Name					Bran	ch				
	Category		Amount Pay					/able			
			Admis (One	sion Fee time)	Yearly Subscription						Total on joining
	Member		Rs 100		Rs 250 (annual)					Rs.350/-	
	Life Member Rs 100				Rs 2000						Rs.2100/-
the	Declaration by to cted, I agree to a set Society and to parture of the Applications.	ccept to poromote its	oay the			subscrip	tion, to al	oide b	y the Article	es of A	ssociation
3.					Office	Use Only					
	Membership							С	hapter		

Receipt No. / Date

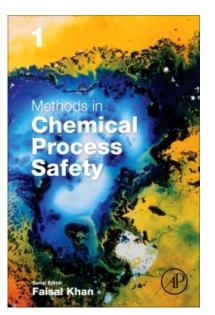
Page 16 of 18

Books

Handbook of reactive chemical hazards:

Edited by Peter Urben

Presents the latest updates on the unexpected, but predictable, loss of containment and explosion hazards from chemicals and their admixtures and actual accidents. The extensively cross-referenced book enables readers to avoid explosion and loss of containment of chemicals.


Editors: Peter Urben Imprint: Elsevier

Published Date: 24th March 2017

Page Count: 1520

Safety

Methods in Chemical Process Safety publishes fully commissioned methods papers across the field of process safety, risk assessment and management and loss prevention. It aims to provide informative, visual and current content that appeals to both researchers and practitioners in process safety. Publishing one themed volume a year, the publication will provide a resource detailing the latest methods in the field of chemical process safety.

The series will cover the following topics: Hazard identification and detection: Hazard identification including atypical hazard identification Innovative approaches to the design of fire detection or fire protection systems:

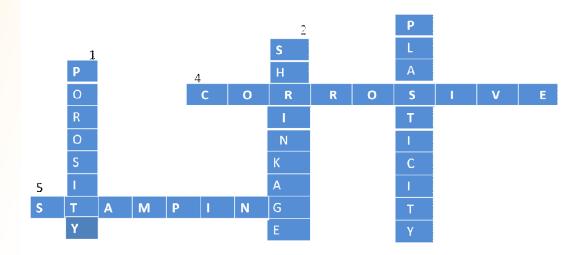
detection or fire protection systems; Risk Assessment and Management: Risk assessment and management including dynamic risk assessment and management, operational risk management, and risk based design

Defining Risk Acceptance Criteria Risk Assessment with Limited Data

Page 17 of 18

Events in the pipeline

2nd International Conference on Engineering Design and Analysis (ICEDA 2017): Conference Dates 13 - 15 Oct 2017: http://www.iceda.org/index.html


SFA-IIM joint symposium on failure analysis during NMD-ATM 2017 of Indian Institute of Metals at BITS, Goa during Nov.11-14, 2017: details in the web:

http://www.nmd-atm.org/index.php

Success will not lower its standard to us. We must raise our standard to success.

Randall R McBride Jr

Answers to the crossword:

Page 18 of 18

We are on the Web now!
Please visit www.sfaindia.org

For Private circulation only

 $\mathcal{T}o$

From
Society for Failure Analysis (SFA)
C/O Centre for Military Airworthiness &
Certification, RCMA,
Kanchanbagh
Hyderabad-550058